
Internationaldournal of Theoretical Physics, Vol. 8, No. 3 (1973), pp. 155-170 

Perception and Operation in 
the Definition of Observable 

E. A. B. C O L E  

School of Mathematics, University of Leeds, Leeds, LS2 9JT 

Received: 19 duly 1972 

Abstract  

A discussion of the roles of assumption and abstraction in physics is presented, with 
emphasis on the fact that if abstractions are used long enough it becomes difficult to 
disentangle them from what is actually observed. The unclear meaning of the word same 
in the context of two observers measuring the same observable is also discussed. An 
observable is defined operationally as a list of instructions, and this definition also 
defines the word same in this context. Methods for the combination of these observables 
are presented. An observer decides whether or not a list of instructions is physically 
realisable by examining the states of the system, and it is shown how these states are 
based on the observer's powers of perception. Finally, an account of the operational 
nature of cellular space-time is given, the fuzzy nature of the cell boundaries is discussed, 
and it is shown how measuring rods consisting of 'straight' strings of cells may be 
constructed. 

1. Introduction 

The object o f  this paper  is to analyse in par t  the role o f  the assumptions 
that  are made in physics, in particular in the field o f  turning observed results 
into abstractions which then enter our  theories. Certainly these abstractions 
are necessary if  we are to classify observations and predict future observa- 
tions, but  the danger  is tha t  if  these abstractions are used long enough it 
becomes more  and more  difficult to disentangle them f rom what  is actually 
observed as with, for  example, the not ion o f  continuous space-time. As 
Atkin  (1971) points out, it leads to the idea o f ' . . ,  an ideal, or absolute, world 
which scientists must  always find elusive'. 

In  this connection,  Meredith (1966) points out  ' . . .  the abstractions 
change f rom generation to generation and it would be a pity if  physics had 
to be described as a science o f  fashionable abstractions. Perhaps, then, 
abstractions are no t  the subject-matter o f  physics. But then what  is physics 
about  ? A n d  if the abs t rac t ions--which certainly loom large in any treatise 
on phys ics- -are  no t  its subject-matter, what  is their status ? Only a study o f  
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the history of the subject and of what physicists do can answer these two 
questions. And there need be no obscurity in the answer--for physics is a 
perfectly concrete science and the obscurity is only in men's minds'. 

Thus the abstractions, the assumptions which lead to them and the very 
operations of measurement should be looked at very carefully, because it is 
only when these distinctions are recognised that we are able to jump from 
one theory to a more general one. In this paper we take up Meredith's 
suggestions of studying what physicists do by presenting an account of the 
nature of observation and measurement from an operational point of  view. 

One abstraction already mentioned is the continuum. After many years 
of traditional teaching it really is difficult to think of the natural world as 
being other than, in a very crude sense, a series of physical phenomena 
taking place in a continuous space-time. Yet whenever we observe the world 
we never use a working continuum---each observer is limited by the degree 
of refinement of his instruments, which in turn is limited by the amount of  
energy he supplies to the instruments for this purpose. Thus in any observa- 
tion, a cellular space-time is always used, the exact structure of  which is 
observer dependent (Cole, 1972a, b). And as it is never possible to 'observe' 
the continuum it must be regarded purely as a device which may make our 
theories easier to handle, and which may be discarded if it becomes too 
cumbersome. 

Another abstraction arises when we come to handle and interpret a set 
of  measurements. For example, suppose we try to measure a property of  a 
system which we know to be stationary. Measurements are made over a 
time interval and at the end of the interval we have perhaps a spread of  
observed values. It is then convenient to abstract from this set of values one 
single representative value which can be inserted into our current theory--  
single values are much easier to use than sets of values. We do this so often 
that we begin to regard the abstracted value as representing the actual value 
of what we are measuring, and the individual values of  the set are then 
regarded as being in error in some way. Having abstracted this value we 
then mentally, if not physically, destroy the set and use only the abstracted 
value. What is often forgotten is that the single representative value is 
merely a formal device which may make the theory easier to use, an 
abstraction from the only concrete quantities available to us-- the individual 
elements of  the original set which have been obtained by direct observation. 
(In this sense, experimentalists have been tricked into talking of experi- 
mentaIerror, as though the observations which are the products of  themselves 
and their apparatus are somehow faulty and the only correct value is some 
abstract quantity thought up by the theoretician.) Having recognised the 
fact of this abstraction, it is then a small step to realising that a theory may 
be constructed which handles sets of  readings rather than one representative 
value from each set. Of course, such a theory will have its own abstractions, 
but to recognise the abstractions is to recognise the assumptions which 
lead to those abstractions, and hence may lead to a theory with weaker 
assumptions. 



PERCEPTION AND OPERATION IN THE DEFINITION OF OBSERVABLE 157  

Observations are always made through real, non-ideal measuring 
instruments, each of  which has a degree of  refinement governed by the 
finite amount of  energy available for refining the apparatus. Very often at 
the output of  the apparatus, at the observer-apparatus interface, the 
readings are those of  a distance in which the reading may be recorded as a 
line on a sheet of  paper. On using a predetermined scaling factor, the length 
of the line is transformed into another value which gives a measure of what 
is being observed. Since the sheet of  paper and any measuring rod will have 
cellular structures, this distance is actually a distance set (Cole, 1972a) in 
which the elements depend on both cellular structures. Now, the resulting 
set of observed values can be compared directly with the traditional way of 
presenting the results of an observation, usually of  the form x 4-Ax.  
In this latter case it is usual to think of  a 'real, actual' value lying somewhere 
in the continuous range (x  - Ax,  x + Ax),  which again confuses the abstrac- 
tion with the reality. A way out is to deal with the complete set of  observed 
values as it stands and not to abstract a representative value. Measurements 
by different observers could still be compared: suppose two observers 
measure the same observable (a detailed discussion of  the word 'same' is 
presented in Section 2) and arrive at sets of  observations d and d '  which may 
or may not have elements in common. The sets may then be compared by 
testing whether or not they overlap on the real line; that is, the segments 
(mind, maxd) and (mind' ,  maxd')  overlap on the real line. If the two sets 
do overlap in this sense we may write d o d', where o is an overlap relation. 
This relation is reflexive and symmetric and can be compared with the f u z z y  
relation of  Fuzzy Geometry (Poston, 1971). Note that in the definition of  the 
overlap relation the notion of a continuous real line has been used. This is 
quite acceptable as long as it is remembered that it is merely a device for 
comparing the two sets in this way, and it leaves the door open for further 
detailed comparison of the individual elements of  the sets because these sets 
have not been destroyed by the abstraction of  a single value. 

All this supposes that the observer knows just what it is he is measuring 
and that it is possible for him to measure the same quantity as another 
observer. But a detailed analysis of the word 'same' in this context shows 
up a great many difficulties which are not apparent in the fleeting analysis we 
usually give to everyday words. To illustrate this with an example, suppose 
that two observers A and B attempt to measure the momentum of  a pro- 
jectile. Observer A, knowing its mass, finds its speed by timing it over a 
fixed distance, and hence finds its momentum by multiplying its mass by the 
speed. Observer B has fixed a known weight to a vertical string and measures 
the amount by which the weight rises when struck by the projectile, and 
and thereby calculates its momentum using conservation principles. By 
saying that the projectile has a momenumt and that both observers are 
measuring it we have already assumed that they are measuring the same 
quantity. But if we take a step backwards and say that A and B are measuring 
quantities momentum (A) and momentum (B) respectively, that is, split 
the definition & t h e  observable, it can then be recognised that it is a further 



158 E, A. B. COLE 

assumption to say that momentum (A) is the same as momentum (B). 
Further, the assumption is very vague, because what do we mean by the 
word 'same' in this case ? Nevertheless, this very vague notion of the same- 
ness of observations is useful for communication processes between 
observers. 

On the other hand, we can remove the problem of the meaning of the word 
'same' by thinking not of a particular quantity, for example momentum, as 
being attached to the particle (Bohm et al., 1970), but that the final values 
which emerge from the act of measurement refer to the whole particle- 
apparatus complex. In effect this is close to saying that each piece of ap- 
paratus defines its own observable and that it is meaningless to talk of  two 
observers, each with their own apparatus, measuring the same thing. Thus 
not only are the observed values observer-dependent, but also the definition 
of the observables are observer-dependent. All this would be very well if the 
observer worked in isolation with his apparatus--he could make observa- 
tions and construct very personalised theories which relate only to his 
apparatus, but in practice he must communicate with other observers. 

Thus what is needed is a definition of  observable between these two 
extremes, such that on the one hand it is not to be thought of as being 
attached to what is being observed independently of  any observing process 
so that no assumption is made regarding the equivalence of two different 
processes, and on the other hand it is to be thought of as being more than a 
purely single-observer-dependent entity because we want several observers 
to be able to communicate their results in a meaningful way. This problem 
will be tackled in Section 2 with a purely operational approach to the 
definition of observable. 

Several previous attempts have been made at a discussion of  the purely 
operational nature of  observation. Antoine & Gleit (1971) describe the 
structure of  an experiment performed by one observer. But despite their 
discussion of apparatus being transformed in the sense of being translated, 
rotated, etc., this is not very useful operationally when we want to consider 
how two observers, each using a different set of  apparatus, can compare 
their results. Again, Mielnik (1969) becomes trapped in his own vicious 
circle. As he points out, ' . . .  This description, although plausible, is not 
operational. In order to cheek whether a device does or does not change the 
properties of certain particles we must first be able to measure these 
properties. But in order to do this we must first have measuring devices 
(filters)! To avoid the vicious circle we need an operation definition of 
filters which would not assume any a priori ability of  analyzing the beam'. 
This is correct, but when he then goes on to define two transmitters as being 
equivalent when they behave identically in all experiments on the optical 
bench, he falls into his own trap because in order to test that the trans- 
mitters are behaving identically the same beam must be passed through both 
transmitters, that is, the same beam must be used on at least two occasions. 
And we run into the same problems over the word 'same' in this context as 
we did in the previous context. Thus this description of equivalence is not 
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operational. This problem arises again in his description of a linear detector 
d: it is linear if 

d(x + y ) = d x  + dy 

where x and y are any two beams. In order to operationally check whether 
a detector is linear in this sense it is again necessary to use beam x (as well 
as beam y) on at least two separate occasions which again supposes that the 
two beams are the same. 

In the same way, although Davies & Lewis (1970) are correct in their 
desire of removing the repeatability hypothesis in measurement, they again 
have a distributive condition in their definition of an instrument and this 
again is not directly operationally verifiable. 

With pitfalls of  this nature in mind we go on in the next section to define 
an observable on a purely operational basis. In Sections 3 and 4 the observ- 
ables are linked with the possible states of the system, and to be consistent 
an account of  these states is given from an operational viewpoint; these 
states are not regarded as being intrinsic to the system but are related to the 
degree of  perception of  the individual observer. While an attempt is made 
to remove as many assumptions as possible from the discussion one 
assumption will still remain: the assumption of the constancy of language 
in its meaning to different observers. A detailed discussion of  this assump- 
tion would be very troublesome, but it is an assumption explicitly made and 
as such must be discussed, if only briefly. 

2. The Operational Definition of  Observable 

We define an observable as an ordered, physically realisable list of 
instructions. Two observers measure the same observable if they both carry 
out the same list. 

Several points emerge from this definition. Firstly, as well as being a 
definition of  observable it is also a definition, in this context, of  the word 
same. In order to make it a sensible definition this supposes that for any 
two people who interpret a given list, neither will argue with the other's 
interpretation. This supposition is not strictly foolproof and will be dis- 
cussed more fully in Section 4. Secondly, sets of instructions may have 
many different visual forms--as a set of  verbal instructions as, for example, 
a tape recording of  spoken instructions, as a set of written words, as a set of  
diagrams or as any other communication process. Thirdly, there will be no 
idea at this stage of two distinct sets of  instructions being equivalent in any 
sense, but this idea may always be introduced at some later stage in theories 
which deal with specialised physical phenomena. Fourthly, an observer will 
be restricted to carrying out the instructions in the order in which they are 
presented. The instructions may also give orders telling how to construct 
apparatus as well as how to use it. In addition, all objections from a third 
observer that, for example, two other observers have not used the same 
temperature in their experiments must be overruled if the list of instructions 
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makes no mention of temperature (or rather, if there are no instructions in 
the list which the third observer would regard as ' temperature '  control), 
for they would still be carrying out the same list of  instructions and hence 
would be measuring the same observable. The third observer may write in 
the extra instructions if he wishes, but then the new complete list will be 
regarded as a different observable. Finally, not all lists of  instructions may 
be physically meaningful to an observer; for example, after carrying out 
one of the instructions it may be impossible to carry out at least one of the 
later instructions. Those that can be carried out are called observables, with 
no distinction being made between whether or not results are actually 
tabulated. The formal distinction between physically realisable and un- 
realisable lists of  instructions will emerge in the following analysis. 

A list of  instructions will be specified by the product form a l  a2 . . . . .  an 
for any n >/1, where the a~ are the separate instructions in the list, and the 
convention will be that at is performed before a~+l (i = 1 , . . . , n -  1). The 
separate at are themselves lists consisting of one instruction. Define C to be 
the set of  all possible lists, which contains all possible physically unrealisable 
as well as realisable lists of  instructions. Then we may think of the identity 
element e of  C, not necessarily unique, such that its insertion in any place 
in any list will not operationally change that list. In words, it could take the 
vague form 'ignore this instruction'. Thus for any list al . . . . .  an E C, we have 

a l  . . . . .  a~eai+l . . . . .  an =-as  . . . . .  a ia t+ l  . . . . .  a,, (2.1) 

Further, we will use the convention that a, b, e, etc. refer to elements of  C, 
while A, B, refer to subsets of  C. 

A useful concept is the relation <, defined such that if al . . . . .  a,, ~ C then 
x < as . . . . .  an if and only if x is of  the form as . . . . .  at (i < n); that is, the ele- 
ments of  x are the same as the first few elements of  al . . . . .  an. Clearly, if  
a and b are elements of  C then a < a and 

a < b , b < ~ a  =~ a = b  

Further, since ea~ . . . . .  an =- a~ . . . . .  an it would be quite natural to write e < a 
for all a ~ C. 

Products of  two elements of  C can be defined such that if  a, b ~ C with 
a - as . . . . .  an and b - b~ . . . . .  bin, then ab can be defined as the complete 
ordered list as . . . . .  an b~ . . . . .  b,,. In general, ab ~ ha-equivalence would hold 
if the lists ab and ba were identical or if they were postulated to be equivalent 
in some superimposed theory. 

For  each a ~ C now introduce the subset g({a}) of  C defined by 

g({a}) = {x: x < a} (2.2) 

Note that it is written as g({a}) and not g(a); this is because the results 
derived later are written much more simply in terms of  sets rather than in 
terms of single elements, although in some sense it is more desirable to work 
with single observables rather than with sets. Thus, for example, 

g (  {al  a2 a3}) = {as a2 a3, a l  a2, a l ,  e} 
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Definition (2.2) can then easily be extended to the form 

g(A)  -- U g({a}) = {x: x ~ C, x ~< a, a e A} (2.3) 
a E A  

defined for all A c C. Note that e ~ g(A)  for all A c C, except that we 
define g(;3) = 7~, where N denotes the empty set. 

The following results are then easily proved: for all A, B c C and all 
a, b E C, 

O) g (A  0 B )  =g(A) (]  g(B); 
0i) g(A (q B) cg(A) (q g(B); 

(iii) B ~ A ~ g ( B )  = g(A); 
(iv) b ~< a =~ g({b}) c g({a)); 
(v) A ~ g(A); 

(vi) g(g(A)) = g(A); 
(vii) g({e}) = {e}; 

(viii) g ( C )  = C. 

Attention will now be focused on the subset Co of  C such that each 
element of Co is an observable; that is, a physically realisable list of instruc- 
tions. Clearly, we must allow e ~ Co, and although an element a of C which 
is not an element of Co will not be physically realisable, at least one element 
of  g({a}) will be physically realisable. That is, by removing some of  the 
offending elements from the end of  a the remaining list becomes physically 
realisable, if only because e E g({a}). Further, if al . . . . .  a,  is physically 
realisable then it is possible for al . . . . .  ai (i = 1,... ,  n) to be carried out. Thus 
for each a ~ Co, 

g({a}) c Co (2.4) 

It is now possible to obtain a necessary condition on Co. Result (2.4) gives 

U g({a}) = Co 
aEC 0 

and so by definition (2.3), g(Co) ~ Co. But by result (v), Co ~ g(Co). Hence 

g(Co) = Co (2.5)  

This result is a necessary condition on Co but it is not sufficient, because by 
results (vii) and (viii) {e} and C also obey this condition, and by result (vi) 
any subset of  the form g ( A )  obeys this condition. 

There are many different ways of  combining two lists of  instructions 
a and b of C. As already seen the straight products ab and ba can be formed, 
and further, because a and b both consist of  a finite number of elements, 
they can be split up and interwoven with each other. A natural way of  doing 
this is to define the cross product between a = a ~ a 2  ~ . . . . .  a,, ~ and 
b = al  2 az 2 . . . . .  am z as 

{a}x{b} -= {xl x2 Xm+, : x~ = as k (k = 1 or 2); xq = a~l, xi2 = a~- . . . .  " ./2 

and i2> ix  ~ j 2 > j l ( k = l , 2 ) } .  (2.6) 
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That is, the individual instructions of a and b are interwoven in such a way 
that the orders of the separate instructions of a and b are separately 
preserved. Thus, for example, 

{al a2}• b2} = 

{a, a2 b, b2, al b: az b2, al bl b2 a2, bl a• az b=, bl a, b2 a2, b, bz al a2} 

Again, we deal with the sets {a} and {b} consisting of individual elements 
a and b rather than with the elements themselves, because the following 
results may be more clearly written. It also enables us to extend the definition 
(2.6): for each A and B c C, define 

A x B =  tO tO {a}x{b}ifA, B r  ;g 
aeA b~B 

A • ;~ - ~ (2.7) 

Thus, for example, 

{a: a2, c,}x{bl b2} = [{al a2}x{b: b2}l U {c, b: b2, b: ca be, bl be c,} 

The following results may then be easily proved: for all subsets A, B and 
D of C, 

(ix) 
(x) 

(xi) 
(xii) 

(xiii) 
(xiv) 
(xv) 

(xvi) 
(xvii) 

A x B c C ;  
A x B = B •  
A • {e} = A ;  
(A U B) • D=(A • D) tO (B • D); 
(A AB) •  D=(A • D) A (B• D); 
(A x B)  x D = A  x (Bx D); 
A c A x g(B) for  Bg: ;g ; 
abe  {a}x{b}; 
g(A x B)  = g(A) x g(B). 

Several points emerge from these considerations. Firstly, if A and 
B c Co, nothing can be generally said about whether or not the elements of 
A x B are physically reliasable, because the individual instructions making 
up the elements of A and B may be such that it is not possible to combine 
them into a physically realisable list. Secondly, if the element e had not been 
included in the definition ofg(A) then result (xvii) would not hold and would 
have to be replaced with 

g(A • B) = g(g(A) • g(B)) 

from which result (vi) would follow on putting B - {e}. Thirdly, to illustrate 
why sets of elements are used in the notation instead of single elements, if 
the product • had been defined in terms of individual dements then result 
(xiv) would have to be written: for all a,b and d e C, 

(.J a x x =  tO y x d  
x~b• y~a• 
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which certainly does not illustrate the associative property of the product as 
satisfactorily as result (xiv). Fourthly, if a, b and ab are physically realisable 
it does not necessarily follow that ba is physically realisable. This is in 
contrast to the quantum mechanical result that if a, b and ab are hermitian 
operators then ba is hermitian. Finally, note that the distributive results 
(i) and (xii) are of  a different nature to that of  Mielnik so that the criticism 
in Section 1 does not apply in these cases. 

3. States Associated with Observables 

In the last section the status of  physical realisability was discussed and a 
necessary condition was obtained for the set Co of  such processes. But the 
question now arises as to how an observer actually distinguishes in his own 
mind between those that are and are not realisable. 

When presented with such a list of instructions'the observer reads through 
it and, in effect, by direct observation or by delving into his past experiences 
he tries to find a situation to which the list may be meaningfully applied. 
It is not necessary for him to have actually experienced this situation, for the 
situation he finds could well be compounded from his past experiences in 
such a way that he is certain that such a situation could exist. If  no such 
situation exists for him then the list is not physically realisable; that is, not 
an observable. But if he is aware of  at least one situation to which the list 
may be applied then that list is an observable, and hence is an element of  Co. 
For  a list to be an observable, it is then not necessary that it is capable of  
being applied to all physical situations, but only to at least one. In this way, 
the emphasis of  recognising the set Co is shifted to the set of  physical 
situations, or states. 

Let 7 ~ be the set o fall these physical states--the exact operationalcharacter 
of  these states will be discussed in the next section after the structure of  the 
states has been built. Then for each a ~ Co there will be a non-empty subset 
gs, of  k~ such that the operation of  a may be meaningfully applied to any 
state of  ~a. In fact, this definition can be extended to any a ~ C such that 
~a ~_ s~ i fa  ~ Co. After the list a of Co has been carried out the system will be 
in a new state. Let 7 ja c 7/be the set of  all states which are possible after a 
has been carried out, and again we may put 7 ~a r s~ if and only if a e Co. 
Clearly it may be possible for some a ~ Co that ~" Cl 7 j" = ~ ; that is, once 
a list a has been applied to any situation it may not be possible to re-apply 
it as, for example, in destructive testing. Note also in the definition of  ~" 
that we do not restrict the definition to states immediately after the applica- 
tion of  a because, since any act of perception always takes a non zero time, 
the idea of  'immediately after' loses its meaning. 

To aid the analysis we now introduce the formal product q~a defined for 
each subset ~0 c ~ and each a E C. The product is a subset of  7 j and is 
interpreted as the set of  all possible states allowable when list a has been 
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applied to all the elements of  ~p common to ~g". Consistent with the meaning 
of  ~g" we then require that 

7J~= 7t"a (3.1) 

The following formal properties of  the product then ensure, as can be seen 
from the results which follow, that ~ as defined by (3.1) does have the 
meaning required of it. For  all subsets ~k and q~ of  ~g and all a, b ~ C, ~a is a 
product in 71 such that 

(a) (~b U ~o)a = ~ba U cpa; 
(b) (~b O q~)a = ffa O ~oa; 
(c) (~ba) b = ~(ab); 
(d) Ipe = ~;  
(e) there exists ~"  c 71 such that 

(e) ~a ~ ~ if and only if a e Co, 
(fl) ~ba = N if and only if 0 n ~./a  : ~ ,  

Then using (3.1) as the definition of gja the following results can be easily 
derived. For  all 0 c 7 /and  all a, b e C, 

(i) ~ a = ~ ; 
(ii) ~a  c ~ ;  

(iii) q9 c ~ ~ q~a c Oa; 
(iv) kin,b) c ~/,b; 

(v) k~an ~ p b r  ~ aECo, beCo,  ab~Co; 
(vi) 7 ' e=  Ij~/e= ~. 

Result (iv) shows that the total  set of  afterstates of  the instructions of  a 
followed by b is contained in the set of  afterstates of  b alone. In result (v) the 

condition on the left-hand side implies that ~g" and ~b are both non-empty, 
and that at least one of the afterstates of  a is a state to which b may be 
applied so that ab is physically realisable. 

Further, as an extension of result (v) it follows that al a2 . . . . .  a,  E C is an 
observable if  and only if 

7~,1 . . . . .  at n t/,~,+l # ~ ( i  = 1 . . . .  , n -  1)  ( 3 . 2 )  

This result is an expression of what the observer does when he reads through 
a list of  instructions to decide whether or not it is an observable. He first 
looks at al and a2 and decides if it is possible that  at least one of  the after- 
states of  al is a state to which a2 may be applied. I f  the answer is yes (that 
is, if 7,,1 O ~/"~ # ~ )  he then considers if it is possible to follow al a2 with aa. 
I f  the answer is again yes (that is, if  7 ja~"~ fl 7 ~a3 ~ ~ )  he continues along 
the list. I f  he comes to an a~ which cannot follow a~ . . . . .  a~_~, or equivalently 
gt,1 .... a,=~ O 7 t"~ = ~ ,  he concludes that the list is not an observable, but 
if the inequality holds right along the line he concludes that the list is an 
observable. 
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4. Perception and States 

As pointed out in Section 2, the definition of observable given there is not 
as foolproof as we might wish, because if attention is restricted to a group 
of observers, each observer must be satisfied with every other observer's 
interpretation of the lists of instructions. That they will agree is not always 
certain, because their language of communication is based on only a 
finite number of shared experiences. Thus, although their interpretations of 
the words of the instructions will mostly always satisfy one another there 
must always be a certain looseness in their interpretations which could 
possibly lead to disagreement, and this possibility is increased when a list of 
instructions is translated from one language to another. Whether or not an 
observer's interpretations of the lists is acceptable must then be a group 
decision. 

In Section 3 the emphasis was transferred from the observables themselves 
to the set of states T to which the observables may be meaningfully applied, 
because it is through these states that the observer is able to recognise just 
which lists of instructions are physically permissible. Now, this set is the 
total set of distinct states, and the capability to distinguish between states 
rests on the observer's powers of perception through both his unaided eye 
and his instruments. Thus the actual operational construction of T is 
observer dependent and depends on how much energy he has available for 
refining his instruments. Thus, for example, where one observer may 
distinguish two states, another observer with a keener sense of perception 
brought about by more refined apparatus may distinguish three or more 
states. In fact, if an observer is allowed extra energy for expending on his 
apparatus he may use it in two distinct ways. Firstly, it may be used for a 
finer distinction of states in, for example, enabling him to distinguish three 
states where previously he could distinguish only two (microscopic distinc- 
tion). Secondly, keeping the distinction between states the same he may 
use the energy to extend his field of vision (telescopic distinction). In both 
cases the effect is to increase the number of elements of T, but with the 
distinction that in the first case some of the elements of the set disappear 
and will be replaced by a greater number of completely new elements, while 
in the second case new elements are added to the existing set. In fact, when 
first setting up his apparatus the observer must balance to his satisfaction 
this microscopic and telescopic perception. 

There are also elements of an observer's T set which will not change-- 
these are the situations perceived during his past experiences which are 
stored in his memory, and also situations communicated to him by other 
observers. Again, the problem of the constancy of language enters into this 
communication, and it may be that the imprecision of meaning between 
observers will somehow have to be built into physical theory. In this 
connection, an imprecision of a slightly different nature already exists in the 
formal transformation between the cellular space-times of two observers 
(Cole, 1972a); this imprecision is brought about by the observers exchanging 
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only a limited amount of  information concerning their placements of  shared 
events within their own cellular structures. 

5. The Operational Natures of Space-time Structure and 
Distance Measurement 

As pointed out in Section 1, the space-time of every observer has a cellular 
structure brought about by the limited amount  of  energy he has available 
for refining his apparatus. In this section we wii1 discuss more deeply the 
operational aspects of  the cell boundaries and of extension measurement 
using measuring rods. We will also discuss just what is meant by a measuring 
rod which in some way is to be regarded as a 'straight'  string of cells. 

In fact, each observer has at his disposal two types of  cellular structure. 
Firstly he has afixed structure such that no matter how he moves relative 
to his surroundings this structure, once set up, remains fixed relative to the 
events which originally described it. For  example, if he sets up a cellular 
structure to describe the events in a room he relates the cells to fixed objects 
in the room such as doors, windows, etc., and then describes other events 
by statements of  the form 'the chair is near the window' which effectively 
puts the chair in the cell defined by the window. Then no matter how he 
moves around the room, this cellular structure will remain fixed relative to 
the door, window, etc., Another case of  this fixed structure is that imposed 
on the space around the Earth by the graduated scale of  a telescope sighting 
mechanism which is fixed to one point of  the Earth: no matter how an 
observer moves away from the telescope this cellular decomposition always 
remains the same. In effect, a fixed cellular decomposition is one which the 
observer is unable, or unwilling, to move at will. 

In contrast to this the observer also has at his disposal a portable cellular 
structure which he is able to move at will and which he is able to super- 
impose in any way on events. Such a portable structure is the basis of  the 
rods he uses for extension measurement, and extensions between several 
pairs of  events may be compared by using such a structure. An observer 
usually uses both types of  structure at once; for example, a reading through 
his telescope may be plotted as a mark  on a sheet of  graph paper and the 
extension of  this mark  may then be recorded in terms of' the cells of  his 
measuring rod. 

Just as we rule out the continuum in the sense that no observer uses a 
working continuum in his measurements, so we must rule out the idea of  
point as an infinitesimally small observable quantity (although Poston does 
retain the idea of  point and defines distance between points in terms of  a 
portable cellular structure). We must therefore rule out the line, regarded 
as an infinitesimally thin collection of  points, as being a non-observable 
entity. Thus operationally the boundaries between an observer's cells 
cannot be regarded as lines which give hard edges to the cells, Rather, the 
boundaries will have a fuzzy nature and there will then be many situations 
in which the observer is unable to decide whether to place an event in one 
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cell or another. In this way an uncertainty enters into the description of  
events and it may be that future theories will have to take this uncertainty 
into account. However, this uncertainty may be reduced by not forcing the 
observer to decide whether, say, an event occurs in cell n or cell m but by 
allowing him to say that the event is in the region defined by the set {n, m} of 
the two cells. This regions is just a cell in some coarser cellular structure, 
and we should be able to construct our theories so that they can handle 
these regions and the basic cells in an equivalent manner. (Compare this 
with the very different natures of  point, line and plane in a continuous 
geometry.) 

In the following discussion the following notation will be used: n, m, etc. 
will denote the basic cells of  the structure; N, M, etc. will denote sets of  these 
basic cells, and N, M, etc. will denote regions defined by the sets N and M; 
these regions are themselves cells in some coarser cellular structure: 5O will 
denote the set of all such regions in the fixed cellular structure. 

The idea of  two regions overlapping may now be introduced, and the 
symbol o for the overlap relation may again be used because of  the very close 
link with the sense of  that symbol in Section 1. The overlap relation may be 
defined between any regions of  5O or the portable structure: 

2?02? / 
2?0 ~ ~ ~o 2? (5.1) 
27 o M ~ N o M1 for all 3//1 such that 34 c M1 
2? o fie => there exists n E N such that n o h )  

Operationally, the observer decides that two regions overlap if he is able to 
find at least one event which he is able to place simultaneously in both 
regions. 

It is then possible to use a portable reference frame, denoted by r, to 
tabulate extensions between regions of  5 ~ For each 211 and 27 of  5O and 
each portable reference frame r, define 

Dr(3~, 2?) =- {(i,j): i a n d j  are cells of  r such that i o 211 a n d j  o 2?} (5.2) 

Operationally this means that the observer places r over the regions 31and 2? 
and notes that cells i and j of  r overlap with/~r and 27 respectively. He then 
tabulates all such pairs (i,j) of incidences by moving r and hence forms the 
set Dr(M, 2?). This is perfectly possible operationally because since every r 
has a finite extension (Antoine & Gleit, 1971) and hence a finite number of  
ceils the sets Dr(M, 2?) will all have a finite number of elements. 

It then follows from (5.1) and (5.2) that 

Dr(fl, 2?) = U U Dr(m, n) (5.3) 
m~M neN 

and that for each cell k of  r, 

(k, k) e D,(/I~, 3it) (5.4) 



168 E.A.B. COLE 

Further, attention will be confined to those portable structures which 
have an unlimited freedom of movement in the sense that, operationally, 

Dr(M, ~) = Dr(~, ~) (5.5) 

Next, two regions ~Q and b7 are said to be adjacent if  they do not intersect 
but it is possible to arrange any other portable cell q such that q o 2hf and 
q o 2V simultaneously; again, this is perfectly acceptable operational defini- 
tion. (But see the last paragraph of  this section also.) 

Having said that extensions between regions o f5  P may be tabulated using 
a portable structure it is possible to move closer to the idea of such a structure 
as a 'straight' string of cells. To this end, define an ordered collection of cells 
st, s2 . . . . .  st of  a portable structure to be a string a, denoted by a - (sl,s2, 
. . . .  s0, ifsj  and s j+l are adjacent. Thus a string is an ordered set of adjacent 
cells, and the definition allows the string to twist back on itself in the sense 
that sj and s, may overlap if IJ - k[ > 1. 

Next, if a - (sa, Sa,..., s,) is any string, define the set 

I;(a) - {a': a '  is a string (s~', s2', ..., s /)  such that for each portable 

structure r, Dr(Sk',Sk') = D~(Sk, Sk) (k = 1, . . . ,  i)} (5.6) 

That is, S(a) is the class of all strings which have the same number i of  cells 
as a, and corresponding cells of the strings all have the same extension with 
reference to all portable structures. Effectively, we form the class of strings 
which have the same number of cells and same 'total length' in this sense. 
It follows from (5.6) that 

~r e ~(~) 
and 

~' e Z(~) ~ S(G') = ~(~) 

It is then possible to define the 'straightest' string of the class I~, called a 
ruler, as that element p = (p~ .. . . .  p~) such that for each region L of any fixed 
cellular structure, 

i 

U {m: m ~ 6 ~ sl o L, sk o m for all (sl . . . . .  st) e I;(0)} 
k = l  i 

c U { n : n e 3 ~ , p l o L ,  p~on}  (5.7) 
j = l  

This says that with one end p~ of the ruler overlapping with L, the region 
swept out by the ruler is not smaller than that swept out by any other string 
in S(p). This definition allows for the fact that there may be more than one 
ruler in a class. 

It is really an assumption to state that such a ruler exists in each class, but 
in a list of instructions for the construction of a ruler this assumption will 
not be stated explicitly. It is then up to the observer who tries to carry out 
the instructions to decide whether or not the assumption, according to his 
experience, is valid. 
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Having defined a ruler it is possible to define a uniformly celled ruler 
P = (Pl . . . . .  p~) such that 

Dr(pk, Pk) = Dr(p j, p j) (k , j  = 1,. . . ,  i) (5.8) 

for each portable structure r. For each uniformly celled ruler p it is then 
possible, by defining areaI parameter ~p for each p, to use it to tabulate the 
extensions between regions of 5 a in terms of sets of real numbers in the form 

do(a~r N ) =- {~.oin - rn]: (P,,Pm) ~ Do(M, N)} (5.9) 

It follows from (5.5), (5.4) and (5.3) respectively that for each uniformly 
celled ruler p and all M, N e 50, 

o E 

dA , f )  = U U dam, n) 
m~M n~N 

and we may add the further assumption that 

min dp(M, N) < max dp(~, L) + max dp(L, ~ )  

These are just the results produced without derivation by Cole (1972a). In 
this way, the continuum notion of a single real-valued distance between 
two points is replaced by the notion of a set of real valued distances between 
regions. Allowing for the fact that two observers each with their own rulers 
will want to compare their distance sets (possibly by means of the overlap 
relation of Section 1), the values of 4o may be adjusted by comparing their 
rulers with some standard structure. The greater the number of cells in a 
ruler the smaller will be the value of 40, and so this value is an observer- 
dependent parameter, the value of which is related to the amount of energy 
the observer has for refining his ruler. 

Finally, it is necessary to discuss the operational status of the equations 
appearing in this section. All the quantities u s e d I f o r  example, m, ~r, 
D,(~r,~) and do(~r,N)--are the actual quantities that the observer uses, 
sets up observationally, or is able to calculate from his observations. But 
phrases of the form 'for all portable structures r '  must have more subtle 
interpretations if they are to be considered operationally. In the usual 
mathematical sense, 'for all r '  is interpreted as 'for all r that has been used 
and all possible r that could ever be used'. But in practice an observer is not 
able to wait an indefinite period to test the validity of his equations with 
every possible r. Thus, for example, in the definition (5.8) of a uniformly 
celled ruler, he tests both sides of the equation with the limited number of 
portable structures he has available. The equality is inserted only when he is 
reasonably satisfied that it holds for all the r available to him. Exactly the 
same consideration applies to the words 'any other portable cell q' in the 
definition of adjacent regions. The words 'for all' and 'any other' which 
appear in all the equations must then be interpreted in this operational sense. 
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